

ТУ 5760-002-86232607-2010

ТЕПЛОСЛОЙ Жидкая сверхтонкая теплоизоляция это современный материал, изготовленный на основе полых микросфер (рис. 1), заполненных разряженным воздухом и имеющих уникальные теплопроводные свойства. Микросферы смешаны в смеси специальных добавок и акриловом связующем. Все сырьевые материалы импортного качества. Материал производства проходят входящий контроль имеет водой, краскораспылителем, экологически цвет, разбавляется наносится кисть или безопасный. **Теплопроводность ТЕПЛОСЛОЙ -** 0,001 Bт/м °C

Рисунок 1.

Жидкая теплоизоляция ТЕПЛОСЛОЙ выпускается в двух модификациях (рисунок 2):

- **ТЕПЛСОЛОЙ фасад** для фасадов, стен интерьеров, оконных откосов, полов, потолков и тд.
- ТЕПЛОСЛОЙ металл для металлических поверхностей, труб, резервуаров, цистерн.

С помощью жидкого теплоизолятора ТЕПЛОСЛОЙ, можно снизить потери теплоносителя до 35%, а значит уменьшить энергозатраты. Так же уменьшается стоимость работ по теплоизоляции, так как материал наносится как обычная краска на водной основе.

Принцип работы теплоизолятора ТЕПЛОСЛОЙ - это отражение теплового потока в виде лучистой энергии (рис 3).

Рисунок 3.

Технические характеристики жидкой теплоизоляции ТЕПЛОСЛОЙ

Наименование	Единица измерения	Величина	Примечания
Теплопроводность при 20 °C, не более	Вт/м °С	0,001	ГОСТ 7076- 87
Плотность в жидком виде	кг/м3	550-650	ГОСТ 17177-94
Удельная теплоемкость	кДж/кг °С	1,14	
Коэффициент паропроницаемости	мг/м ч Па	0,0016	ГОСТ 25989-83
Термостойкость при температуре 150 °C	Отсутствие трещин, вздутий и расслоений		
Водопоглощение	г/см3	0,04	ГОСТ 11529-86
Относительное удлинение при разрыве, не менее	%	5,0	ГОСТ 11262-80
Относительное удлинение при разрыве после ускоренного старения (10 лет), не менее	%	5,0	ГОСТ 11262-80
Прочность сцепления при отрыве, не менее 1 с металлом 2 с бетоном 3 с деревом	Мпа	1. 1,53 2. 1,84 3. 1,84	ГОСТ 15140-78
Прочность при растяжении, не менее 1. после нанесения 2. после ускоренного старения (10 лет)	Мпа	1. 2,0 2. 3,0	ГОСТ 11262-80
Прочность при ударе	Кг*см	50	ΓΟCT 4765- 73
Температура транспортировки и хранения		от +5 - + 30	
Температура поверхности при нанесении материала	°C	от +5 до +150	
Температура эксплуатации	°C	от - 45 до + 260	
Долговечность для бетонных и металлических поверхностей в умеренно-холодном климатическом районе (Москва)	Лет	не менее 15	
Срок хранения	Mec	12	

ТЕПЛОСЛОЙ - ФАСАД

Применяется для наружных и внутренних работ по бетонным, кирпичным, оштукатуренным, ошпаклеванным основаниям. Сверхтонкая теплоизоляция **ТЕПЛОСЛОЙ** - **фасад** обладает высокими теплоотражающими свойствами и является идеальным решением в области строительной теплоизоляции и энергосбережения зданий и сооружений. Материал паропроницаемый, атмосферостойкий, обладает хорошей адгезией, не стекает с вертикальных поверхностей.

Жидкая теплоизоляция ТЕПЛОСЛОЙ - фасад применяется:

- Теплоизоляция стен жилых и производственных зданий
- Теплоизоляция потолков, полов
- Теплоизоляция оконных откосов
- Теплоизоляция стен цокольных этажей, подвалов
- Теплоизоляция гаражей

Материал **ТЕПЛОСЛОЙ** изготовлен на основе акрилового связующего и специальных функциональных добавок. В качестве наполнителя используются керамические микросферы, которые заполнены разряженным воздухом, за счет которых ТЕПЛОСЛОЙ имеет теплопроводность 0,001 BT/м°C (к сравнению: вата минеральная 0,045 - 0,055 BT/м°C, пенобетон 0,3 т/м°C, бетон пористый 1,4 BT/м °C, пенополистирол 0,04 BT/м °C).

Сверхтонкая теплоизоляция ТЕПЛОСЛОЙ, наносится кистью или краскораспылителем. Необходимая толщина сверхтонкого теплоизолятора ТЕПЛОСЛОЙ, варьируется от 1 мм. до 6 мм. (определяется метод расчета толщины покрытия), а дальнейшее ее увеличение уже не влияет на эффективность теплоизолятора. Теплоизолятор ТЕПЛОСЛОЙ поставляется готовым к применению, допускается разбавление водой до нужной малярной вязкости. Наносится на предварительно загрунтованную поверхность грунтом на акриловом связующем, мы рекомендуем грунтовку глубокого проникновения MIRACLE.

Цвет: белый, может колероваться.

Расход: на 1 м.кв. для слоя толщиной в 1 мм. - 1 литр. **Безопасность:** экологически безопасный материал.

Хранение: в плотно закрытой таре при температуре +5°C - +30°C. Срок хранения 12

месяцев со дня изготовления.

Методы расчета толщины для стен ограждающих конструкций

При расчете толщины теплоизоляционного покрытия для утепления ограждающих конструкций (зданий) необходимо учитывать несколько факторов:

- 1. Толщину стен ограждающей конструкции,
- 2. Материал из которого изготовлены стены и его коэф. теплопроводности,
- 3. Возможность утепления конструкции с внутренней стороны

Рассмотрим пример утепления стены здания из пеноблока:

Исходные данные:

 $\lambda 1 = 0.13$ – коэффициент теплопроводности пеноблока с плотностью до 400 кг/м³, (Вт/м °С)

 $\delta 1 = 0.3 -$ толщина пеноблока, (м)

F = 780,3 -расчетная площадь стен под изоляцию, (м²)

 $\lambda = 0.0018$ — коэффициент теплопроводности материала при применении его в строительстве, (BT/м°C)

 $\mathbf{CH1} = 1,67 -$ коэффициент теплоотдачи наружной поверхности ограждения с покрытием **ТЕПЛОСЛОЙ - фасад**, (Вт/м °C)

 δ — необходимая толщина изолятора **ТЕПЛОСЛОЙ - фасад**, (м)

ан = 23,00 — коэффициент теплоотдачи стены из пеноблока неизолированной материалом, (Вт/м2 0C).

1. Определяем термическое сопротивление стены из пеноблока:

$$R_{1cT} = \delta_1/\lambda_1$$
, $R_{1cT} = 2.3 \text{ M}^2 \text{°C/BT}$

Термическое сопротивление ограждающей конструкции по 2 этапу должно соответствовать $\mathbf{R}_{1\text{ст. из}} = \mathbf{3,15} \, \mathbf{m}^2 \, ^{\circ}\mathbf{C/BT}$.

2. Термическое сопротивление стены с учетом покрытия изолятором **ТЕПЛОСЛОЙ - фасад R1** ст. из = **R1ct+** R1 из, R1ct.из = **3,15** м² °C/Вт

Где, дополнительное термическое сопротивление от тепловой изоляции составит:

R1 из =3,15-2,3= 0,85 =
$$\delta/\lambda$$
 + (1/ α H1 - 1/ α H), δ =0,00053 M = 0,6 MM

 λ — коэффициент теплопроводности материала, (Bт/м °C)

 \mathfrak{C}_{H1} — коэффициент теплоотдачи наружной поверхности ограждения с покрытием, (BT/м² °C) δ - толщина (м)

R1cT — термическое сопротивление стены из пеноблока, (M^2 °C/BT)

 α н — коэффициент теплоотдачи обычной неизолированной материалом стены, (BT/м² °C)

R1 из =3,15-2,3= 0,85 =
$$\delta/\lambda$$
 + (1/ α н1 - 1/ α н),

Экономия с ТЕПЛОСЛОЙ-фасад

- 1. Снижение эксплуатационных расходов в отопительный сезон, путем уменьшения тепловых потерь за счет утеплений сооружений и внутренних помещений зданий.
- 2. Снижение эксплуатационных расходов на кондиционирование воздуха внутри помещений, путем изоляции крыши и стен здания.
- 3. Снижение прямых расходов при строительстве зданий и сооружений за счет возможности уменьшения толщины стен, габаритов фундаментов при применении в качестве "теплового щита".
- 4. Возможность замены громоздких систем утепления фасадов, стен зданий и сооружений материалом **Теплослой-фасад**.
- 5. Снижение трудозатрат и времени в строительстве при использовании теплоизоляционного материала.
- 6. Снижение расходов на ремонт старой изоляции за счет отсутствия необходимости ее демонтажа.
- 7. Высокий гарантийный срок эксплуатации материала Теплослой-фасад.

ТЕПЛОСЛОЙ-МЕТАЛЛ (антикор).

В настоящее время для теплоизоляции различных трубопроводов и емкостей для хранения всевозможных химикатов используются такие материалы, как пенополиуретан,

пеностирол, изовер, минеральная вата. Данный способ утепления трубопроводов не только загрязняет окружающую среду, но и опасен для здоровья людей. Кроме этого, гарантийный срок эксплуатации таких материалов не велик. Практически, через 1-2 года под воздействием атмосферных осадков и перепадов температур, стандартные теплоизоляционные покрытия полностью теряют свои теплоизоляционные свойства, отслаиваются, осыпаясь на землю.

В отличие от известных теплоизоляционных материалов, **ТЕПЛОСЛОЙ - металл** прекрасно зарекомендовал себя, как теплозащита конструкций с высокой температурой. Способность **ТЕПЛОСЛОЙ - металл** работать при высоких температурах, хорошая адгезия, практически к любому материалу, делает его незаменимым для применения в качестве теплои гидроизоляционного покрытия в теплоэнергетике. Кроме этого, возможность наносить распылителем или кисточкой **ТЕПЛОСЛОЙ - металл** на поверхности сложной конфигурации, позволяет использовать материал в самых труднодоступных местах.

В отличие от традиционной изоляции, **ТЕПЛОСЛОЙ - металл** консервирует не удаленную ржавчину и исключает возможность образования коррозии на покрытой поверхности.

Сверхтонкий теплоизолятор **ТЕПЛОСЛОЙ - металл**, применяется по оцинковке, алюминию, металлу предварительно очищенному от отслаивающейся ржавчины. Сверхтонкая теплоизоляция **ТЕПЛОСЛОЙ-металл** обладает высокими теплоотражающими свойствами и является идеальным решением в области теплоизоляции и энергосбережения. Материал имеет отличную адгезию к металлическим поверхностям, атмосферостойкий, не стекает с поверхностей. В своем составе содержит антикоррозийные наполнители и ингибитор коррозии.

Жидкая теплоизоляция ТЕПЛОСЛОЙ - металл применяется:

- Как краска от ожогов
- Теплоизоляция трубопроводов и теплотрасс
- Теплоизоляция холодильных камер
- Теплоизоляция резервуаров
- Теплоизоляция цистерн
- Теплоизоляция металлических сооружений
- Теплоизоляция гидрантов, водонагревателей и бойлеров
- Теплоизоляция горячих химических смесителей
- Теплоизоляция рефрижераторов
- Внутренняя часть корпуса судов и машинных отделений

Материал **ТЕПЛОСЛОЙ** изготовлен на основе акрилового связующего и специальных функциональных добавок, ингибитора коррозии и антикоррозийных пигментов. В качестве наполнителя используются керамические микросферы, которые заполнены разряженным воздухом, за счет которых ТЕПЛОСЛОЙ имеет теплопроводность 0,001 Вт/м °С (к сравнению: вата минеральная 0,045 - 0,055 Вт/м °С, пенобетон 0,3 Вт/м °С, бетон пористый 1,4 Вт/м °С, пенополистирол 0,04 Вт/м °С). Эта композиция делает материал легким, гибким, растяжимым.

Сверхтонкая теплоизоляция **ТЕПЛОСЛОЙ - металл**, наносится кистью или краскораспылителем. Необходимая толщина сверхтонкого теплоизолятора **ТЕПЛОСЛОЙ**, варьируется от 1 мм. до 6 мм. (определяется методом расчета толщины покрытия), а дальнейшее ее увеличение уже не влияет на эффективность теплоизолятора. Сверхтонкая теплоизоляция **ТЕПЛОСЛОЙ** поставляется готовым к применению, допускается разбавление водой до нужной малярной вязкости. Наносится на предварительно очищенную

от ржавчины металлической щеткой поверхность. Наносится на поверхности с температурой до +150°C.

Цвет: белый, может колероваться.

Расход: на 1 м.кв. для слоя толщиной в 1 мм. - 1 литр. **Безопасность:** экологически безопасный материал.

Хранение: в плотно закрытой таре при температуре +5°C - +30°C. Срок хранения 12

месяцев со дня изготовления.

Методы расчета толщины покрытия для горячих поверхностей.

При расчете толщины изоляционного покрытия жидких керамических материалов на горячих поверхностях необходимо использовать, согласно СНиП 2.04. 14 – 88*, следующие формулы:

$$\delta = \lambda_{\text{M}} (T_{\text{H}} - T_{\text{П}}) / \alpha_{\text{M}} (T_{\text{П}} - T_{\text{O}}),$$
 Q= $\alpha_{\text{M}} (T_{\text{П}} - T_{\text{O}})$, или Q= $(T_{\text{H}} - T_{\text{O}}) / (1 / \alpha_{\text{B}} + 1 / \alpha_{\text{H}} + \delta_{\text{T}} / \lambda_{\text{T}})$

Где,

толщина изоляции, (мм).

 $\lambda_{M} = 0,001 - коэф.$ теплопроводности материала, (Вт/м °С)

 $\alpha_M = 1,29 - коэф.$ теплоотдачи материала в окружающий воздух, (Bt/ м² °C)

 $\alpha_B = 2 - \kappa_{O} + \kappa$

 T_H — температура носителя,

Тп – температура поверхности трубы,

То — температура окружающей среды,

тепловые потери на 1-ом м² трубопровода,

При расчете толщины покрытия на объектах, находящихся внутри помещения значение температуры окружающей среды принимать равной +18 - +20 °C.

При расчете толщины покрытия на объектах, находящихся на открытом воздухе значение температуры окружающей среды принимать равной среднегодовой температуре данного региона.

Методы расчета толщины покрытия для холодных поверхностей (от конденсата и образования льда).

При расчете толщины теплоизоляционного покрытия необходимо учитывать несколько факторов:

- 1. Разность температур носителя и окружающей среды,
- 2. Относительную влажность воздуха в помещении

Как показала практика, чем выше влажность воздуха в помещении, тем толще должна быть изоляция. Однако существуют такие условия, при которых устранение конденсата или льда с поверхности объекта не возможна. Данные условия наступают при градиенте температур больше чем 35 ОС при влажности воздуха более 70%.

В основном расчеты по толщине изоляции ведутся согласно СНиП 2.04. 14 — 88* по формулам:

$$\delta = \lambda / \alpha_{\text{M}} \{ (T_0 - T_H) / (T_0 - T) - 1 \}$$

Где,

толщина изоляции, (мм).

 $\lambda = 0.001 - \text{коэф.}$ теплопроводности материала **Теплослой-металл**, (Bt/ м°C)

см = 1,29 — коэф. теплоотдачи материала в окружающий воздух, (Вт/м² °С)

 T_H — температура носителя,

То – температура окружающей среды,

 \mathbf{Q} — тепловые потери на 1-ом м 2 трубопровода,

(To - T) – значения определяем исходя из нижеприведенных данных в таблице

Температура окружающего	Расчетный перепад (To – T), °C, при относительной влажности окружающего воздуха, %					
воздуха	50%	60%	70%	80%	90%	
10	10	7,4	5,2	3,3	1,6	
15	10,3	7,7	5,4	3,4	1,6	
20	10,7	8,0	5,6	3,6	1,7	
25	11,1	8,4	5,9	3,7	1,8	
30	11,6	8,6	6,1	3,8	1,8	

Экономия с ТЕПЛОСЛОЙ - металл

- 1. Снижение трудозатрат и времени при использовании **Теплослой-металл**, за счет легкости и простоты работы с материалом.
- 2. Снижение расходов на ремонт трубопровода по истечении гарантийного срока, за счет отсутствия необходимости демонтажа старой изоляции и выполнения работ по подготовке старого трубопровода к изолированию.
- 3. Снижение расходов на сбережение тепловой энергии в трубопроводах, паровых котлах и т.д., за счет высоких теплоизоляционных характеристик **Теплослой-металл** и полной изоляции трубопроводов, паровых котлов, задвижек, переходов и т.д., даже в самых труднодоступных местах.
- 4. Возможность нанесения **Теплослой-металл** непосредственно на горячую поверхность, без прекращения работы данной теплофикационной сети или парового котла.
- 5. Снижение расходов на монтаж теплоизоляции, за счет уменьшения технологических операций, связанных с утеплением трубопроводов и т.д. при применении **Теплослой-металл** в качестве изоляции.
- 6. Снижение расходов на ремонт трубопровода при возникновении аварийных ситуаций, за счет сокращения времени поиска течи, свища и отсутствия демонтажа старой изоляции.
- 7. Снижение расходов на ремонт теплоизоляции, за счет увеличения гарантийного срока в сравнении со стандартными изоляциями.
- 8. Отсутствие расходов на восстановление изоляции из-за отсутствия возможности вторичного ее использования.

контакты:

г. Волгодонск

ООО "ЛКМ-сервис" - производство

347386, Ростовская область, г. Волгодонск, ул. Гагарина 75-51 +7(8639) 25-39-65, +7(961)307-33-37, +7(918)138-89-35, <u>lkm-service@yandex.ru</u>

г. Ростов-на-Дону

ООО "ЮГПРОМСНАБ"

+7(903)401-24-27, +7(928) 770-97-88, +7(951) 499-79-58, rostovukm@mail.ru

г. Астрахань

000 "CTM"

+7(8512) 22-66-40, +7(8512) 45-55-95, +7(8512) 61-18-42, ooostm30@yandex.ru

г. Волгоград

ООО «ТД Герметики Юга»

Тел / факс (8442) 41-44-39;+7 (8442) 46-90-78; 8-905-433-82-77, <u>penetron-volga@yandex.ru</u>, <u>www.qermetiki-yga.ru</u>